Package: transformerForecasting (via
r-universe)

March 8, 2025
Type Package

Title Transformer Deep Learning Model for Time Series Forecasting
Version 0.1.0
Maintainer G H Harish Nayak <harishnayak626@gmail.com>

Description Time series forecasting faces challenges due to the
non-stationarity, nonlinearity, and chaotic nature of the data.
Traditional deep learning models like Recurrent Neural Network
(RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit
(GRU) process data sequentially but are inefficient for long
sequences. To overcome the limitations of these models, we
proposed a transformer-based deep learning architecture
utilizing an attention mechanism for parallel processing,
enhancing prediction accuracy and efficiency. This paper
presents user-friendly code for the implementation of the
proposed transformer-based deep learning architecture utilizing
an attention mechanism for parallel processing. References:

Nayak et al. (2024) <doi:10.1007/s40808-023-01944-7> and Nayak
et al. (2024) <doi:10.1016/j.simpa.2024.100716>.

Imports ggplot2, keras, tensorflow, magrittr, reticulate (>= 1.20)
Suggests dplyr, knitr, lubridate, readr, rmarkdown, utils

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

Author G H Harish Nayak [aut, cre], Md Wasi Alam [ths], B Samuel Naik
[ctb], G Avinash [ctb], Kabilan S [ctb], Varshini B S [ctb],
Mrinmoy Ray [ths], Rajeev Ranjan Kumar [ths]

Depends R (>=4.0.0)
LazyData true
VignetteBuilder knitr

NeedsCompilation no

https://doi.org/10.1007/s40808-023-01944-7
https://doi.org/10.1016/j.simpa.2024.100716

Date/Publication 2025-03-07 11:10:06 UTC
Config/pak/sysreqs libpng-dev python3

Repository https://harish11999.r-universe.dev

RemoteUrl https://github.com/cran/transformerForecasting
RemoteRef HEAD

RemoteSha 1b61751eb1131e422dd8766ec78466f283a295tb

Contents

install_r_dependencies
S P 500 Close
TRANSFORMER

Index

install_r_dependencies

install_r_dependencies
Install Package Dependencies

Description

Installs Python dependencies (TensorFlow, Keras, Pandas) in a Conda environment for the trans-

formerForecasting package.

Usage

install_r_dependencies(env_name = "r-reticulate”)
Arguments

env_name Character string specifying the Conda environment name (default: "r-reticulate").
Value

Invisibly returns NULL after attempting to install dependencies.

Examples

Not run:
install_r_dependencies()

End(Not run)

S_P_500_Close 3

S_P_500_Close S&P 500’s closing price data

Description

The S&P 500’s closing price as data provides an excellent real-world application. The S&P 500
index, a key benchmark for U.S. stock market performance, is vital for portfolio management, risk
assessment, and market analysis. The original data frame contains 1340 rows and 2 variables. Here,
we have taken only 200 rows and 2 variables for demonstration.

Usage

S_P_500_Close

Format

A data frame with 200 rows and 2 variables:

Date Formatted date

Price Numerical price values

TRANSFORMER Transformer Model for Time Series Forecasting

Description

Transformer model for time series forecasting

Usage

TRANSFORMER (
df,
study_variable,
sequence_size = 10,
head_size = 512,
num_heads = 4,
ff_dim = 4,
num_transformer_blocks = 4,
mlp_units = c(128),
mlp_dropout = 0.4,
dropout = 0.25,
epochs = 300,
batch_size = 64,
patience = 10

4 TRANSFORMER

Arguments
df Input file
study_variable The Study_Variable represents the primary variable of interest in the dataset,
(Ex:Closing price)
sequence_size Sequence size
head_size Attention head size
num_heads Number of attention heads
ff_dim Size of feed-forward network

num_transformer_blocks
Number of transformer blocks

mlp_units Units for MLP layers

mlp_dropout Dropout rate for MLP

dropout Dropout rate for transformer

epochs Number of epochs

batch_size Batch size

patience Early stopping patience
Details

This function creates and trains a Transformer-based model for time series forecasting using the
Keras library. It allows customization of key architectural parameters such as sequence size, at-
tention head size, number of attention heads, feed-forward network dimensions, number of Trans-
former blocks, and MLP (multi-layer perceptron) configurations including units and dropout rates.

Before running this function, we advise the users to install Python in your system and create the
virtual conda environment. Installation of the modules such as ’tensorflow’, ’keras’ and ’pan-
das’ are necessary for this package. If the user does not know about these steps, they can use
the install_r_dependencies() function which is available in this package.

The function begins by generating training sequences from the input data (df)) based on the specified
sequence_size. Sliding windows of input sequences are created as x, while the subsequent values
in the series are used as targets (y).

The model architecture includes an input layer, followed by one or more Transformer encoder
blocks, a global average pooling layer for feature aggregation, and MLP layers for further process-
ing. The final output layer is designed for the forecasting task.

The model is compiled using the Adam optimizer and the mean squared error (MSE) loss function.
Training is performed with the specified number of epochs, batch_size, and early stopping con-
figured through the patience parameter. During training, 20% of the data is used for validation,
and the best model weights are restored when validation performance stops improving.

The package requires a dataset with two columns: Date (formatted as dates) and the Close price
(numerical). After loading the data and formatting it appropriately, the TRANSFORMER function
trains a Transformer-based model to predict future closing prices. It outputs essential performance
metrics like RMSE, MAPE, and sMAPE, along with visualizations such as training loss trends
and an actual vs. predicted plot. These features make it an invaluable tool for understanding and
forecasting stock market trends effectively..

TRANSFORMER 5

Value

A list containing the following results:

PREDICTIONS: The predicted values generated by the model.
RMSE: Root Mean Squared Error, measuring the average magnitude of the prediction error.
MAPE: Mean Absolute Percentage Error, representing the prediction accuracy as a percentage.

MAE: Mean Absolute Error, showing the average absolute difference between actual and pre-
dicted values.

MSE: Mean Squared Error, quantifying the average squared difference between actual and pre-
dicted values.

SMAPE: Symmetric Mean Absolute Percentage Error, a variant of MAPE considering both
over- and under-predictions.

RRMSE: Relative Root Mean Squared Error, RMSE scaled by the mean of the actual values.
Quantile_Loss: The quantile loss metric for probabilistic forecasting.
Loss_plot: A ggplot object showing the loss curve over iterations or epochs.

Actual_vs_Predicted: A ggplot object visualizing the comparison between actual and pre-
dicted values.

Examples

Load sample data
data(S_P_500_Close)
df <- S_P_500_Close

Run TRANSFORMER (will use mock results if Python is unavailable)
result <- TRANSFORMER(df = df,
study_variable = "Price”,

sequence_size = 10,

head_size = 128,

num_heads = 8,

ff_dim = 256,
num_transformer_blocks = 4,
mlp_units = c(128),
mlp_dropout = 0.3,

dropout = 0.2,

epochs = 2,

batch_size = 32,

patience = 15

)

Display results

result$PREDICTIONS

resul t$RMSE

resul t$MAE

resul t$MAPE

result$sMAPE

result$Quantile_Loss

Plots are NULL if Python is unavailable

TRANSFORMER

if (!is.null(result$Loss_plot)) result$Loss_plot
if (!is.null(result$Actual_vs_Predicted)) result$Actual_vs_Predicted

Index

x datasets
S_P_500_Close, 3

install_r_dependencies, 2
S_P_500_Close, 3

TRANSFORMER, 3

	install_r_dependencies
	S_P_500_Close
	TRANSFORMER
	Index

